7 Directional Derivatives and Gradients

Suppose we need to compute the rate of change of $f(x, y)$ with respect to the distance from a point (a, b) in some direction. Let $\vec{u}=u_{1} \vec{i}+u_{2} \vec{j}$ be the unit vector that has its initial point at (a, b) and points in the
 desired direction. It determines a line in the $x y$-plane:

$$
x=a+s u_{1}, \quad y=b+s u_{2}
$$

where s is the arc length parameter that has its reference point at (a, b) and has positive values in the direction of \vec{u}.

Definition. The directional derivative of $f(x, y)$ in the direction of \vec{u} at (a, b) is denoted by $D_{\vec{u}} f(a, b)$ and is defined by

$$
D_{\vec{u}} f(a, b)=\left.\frac{d}{d s}\left[f\left(a+s u_{1}, b+s u_{2}\right)\right]\right|_{s=0}=f_{x}(a, b) u_{1}+f_{y}(a, b) u_{2}
$$

provided this derivative exists.
Analytically, $D_{\vec{u}} f(a, b)$ is the instantaneous rate of change of $f(x, y)$ with respect to the distance in the direction of \vec{u} at the point (a, b).

Geometrically, $D_{\vec{u}} f(a, b)$ is the slope of the surface $z=f(x, y)$ in the direction of \vec{u} at the point $(a, b, f(a, b))$.

Slope in \mathbf{u} direction $=$ rate of change of z with respect to s

Generalisation to $f(x, y, z)$ (and $f\left(x_{1}, \ldots, x_{n}\right)$) is straightforward.
Definition. Let $\vec{u}=u_{1} \vec{i}+u_{2} \vec{j}+u_{3} \vec{k}$ be a unit vector.
The directional derivative of $f(x, y, z)$ in the direction of \vec{u} at (a, b, c) is denoted by $D_{\vec{u}} f(a, b, c)$ and is defined by

$$
\begin{aligned}
D_{\vec{u}} f(a, b, c) & =\left.\frac{d}{d s}\left[f\left(a+s u_{1}, b+s u_{2}, c+s u_{3}\right)\right]\right|_{s=0} \\
& =f_{x}(a, b, c) u_{1}+f_{y}(a, b, c) u_{2}+f_{z}(a, b, c) u_{3}
\end{aligned}
$$

Example. Find $D_{\vec{u}} f(2,1)$ in the direction of $\vec{a}=3 \vec{i}+4 \vec{j}$

$$
f(x, y)=\ln \left(\frac{1}{2} e^{2 / 3} \sqrt[3]{12 \sin (x-2 y)+8 y^{2}-x^{3}-6 x^{2} y+32}\right)
$$

Answer: $D_{\vec{u}} f(2,1)=-5 / 3$

The gradient

Note that
$D_{\vec{u}} f=f_{x} u_{1}+f_{y} u_{2}+f_{z} u_{3}=\left(f_{x} \vec{i}+f_{y} \vec{j}+f_{z} \vec{k}\right) \cdot\left(u_{1} \vec{i}+u_{2} \vec{j}+u_{3} \vec{k}\right)$

Definition. Let \vec{e}_{i} be the standard orthonormal coordinate basis of \mathbb{R}^{n}, so that $\vec{r}=\sum_{i=1}^{n} x_{i} \vec{e}_{i}$.
The gradient of $f\left(x_{1}, \cdots, x_{n}\right)$ is defined by

$$
\vec{\nabla} f\left(x_{1}, \cdots, x_{n}\right)=\sum_{i=1}^{n} \frac{\partial f\left(x_{1}, \cdots, x_{n}\right)}{\partial x_{i}} \vec{e}_{i}
$$

In particular

$$
\begin{gathered}
\vec{\nabla} f(x, y)=f_{x}(x, y) \vec{i}+f_{y}(x, y) \vec{j} \\
\vec{\nabla} f(x, y, z)=f_{x}(x, y, z) \vec{i}+f_{y}(x, y, z) \vec{j}+f_{z}(x, y, z) \vec{k}
\end{gathered}
$$

The symbol $\vec{\nabla}$ is read as either "nabla" (from ancient Hebrew) or "del" (it is inverted Δ).
$D_{\vec{u}} f(a, b)=\vec{\nabla} f(a, b) \cdot \vec{u}, \quad D_{\vec{u}} f(a, b, c)=\vec{\nabla} f(a, b, c) \cdot \vec{u}, \quad D_{\vec{u}} f=\vec{\nabla} f \cdot \vec{u}$

Example. Find $\vec{\nabla} r ; r=\sqrt{x^{2}+y^{2}+z^{2}}$ and $D_{\vec{u}} r(1,1,1)$ in the direction of $\vec{a}=\vec{i}+2 \vec{j}+2 \vec{k}$.

Properties of the gradient

$$
D_{\vec{u}} f(a, b)=\vec{\nabla} f(a, b) \cdot \vec{u}=|\vec{\nabla} f(a, b)||\vec{u}| \cos \theta=|\vec{\nabla} f(a, b)| \cos \theta
$$

Since $-1 \leq \cos \theta \leq 1$, if $|\vec{\nabla} f(a, b)| \neq 0$ then the maximum value of $D_{\vec{u}} f(a, b)$ is $|\vec{\nabla} f(a, b)|$ and it occurs when $\theta=0$, that is, when \vec{u} is in the direction of $\vec{\nabla} f(a, b)$.

Geometrically, the maximum slope of the surface $z=f(x, y)$ at (a, b) is in the direction of the gradient and is equal to $|\vec{\nabla} f(a, b)|$.

If $|\vec{\nabla} f(a, b)|=0$ then $D_{\vec{u}} f(a, b)=0$ in all directions at (a, b).
It occurs where the surface $z=f(x, y)$ has a relative maximum or minimum or a saddle point.

Since $D_{\vec{u}} f\left(x_{1}, \ldots, x_{n}\right)=\left|\vec{\nabla} f\left(x_{1}, \ldots, x_{n}\right)\right| \cos \theta$, these properties hold for functions of any number of variables.

Theorem. Let f be a function differentiable at a point P.

1. If $\vec{\nabla} f=\overrightarrow{0}$ at P then all directional derivatives of f at P are 0 .
2. If $\vec{\nabla} f \neq \overrightarrow{0}$ at P then the derivative in the direction of $\vec{\nabla} f$ at P has the largest value equal to $|\vec{\nabla} f|$ at P.
3. If $\vec{\nabla} f \neq \overrightarrow{0}$ at P then the derivative in the direction opposite to that of $\vec{\nabla} f$ at P has the smallest value equal to $-|\vec{\nabla} f|$ at P.

Example. The point $P=(2,3,-1)$

$$
f(x, y, z)=\sqrt{2 x y+3 z^{4}-6 \cos (3 x-2 y)}
$$

Gradients are normal to level curves and level surfaces

Level curve $C: \quad f(x, y)=k$.
Let C be smoothly parametrised as $x=x(s), y=y(s)$ where s is an arc length parameter. The unit tangent vector to C is

$$
\vec{T}(s)=\frac{d x}{d s} \vec{i}+\frac{d y}{d s} \vec{j}
$$

Since $f(x, y)$ is constant on C we expect $D_{\vec{T}} f(x, y)=0$. Indeed

$$
\begin{aligned}
D_{\vec{T}} f(x, y) & =\vec{\nabla} f \cdot \vec{T}=\left(f_{x} \vec{i}+f_{y} \vec{j}\right) \cdot\left(\frac{d x}{d s} \vec{i}+\frac{d y}{d s} \vec{j}\right) \\
& =f_{x} \frac{d x}{d s}+f_{y} \frac{d y}{d s}=\frac{d}{d s} f(x(s), y(s))=0 \Rightarrow \vec{\nabla} f \perp \vec{T}
\end{aligned}
$$

Thus if (a, b) belongs to the level curve, and $\vec{\nabla} f(a, b) \neq \overrightarrow{0}$ then $\vec{\nabla} f(a, b)$ is normal to \vec{T} at (a, b) and therefore to the level curve.

Definition. A vector is called normal to a surface at (a, b, c) if it is normal to a tangent vector to any curve on the surface through (a, b, c).

Level surface $\sigma: \quad F(x, y, z)=k$
Let C, smoothly parametrised as $x=x(s), y=y(s), z=z(s)$ be any curve on σ through (a, b, c). The unit tangent vector to C is

$$
\vec{T}(s)=\frac{d x}{d s} \vec{i}+\frac{d y}{d s} \vec{j}+\frac{d z}{d s} \vec{k}
$$

and $D_{\vec{T}} F(x, y, z)$ is

$$
\begin{aligned}
& D_{\vec{T}} F(x, y, z)=\vec{\nabla} F \cdot \vec{T}=\left(F_{x} \vec{i}+F_{y} \vec{j}+F_{z} \vec{k}\right) \cdot\left(\frac{d x}{d s} \vec{i}+\frac{d y}{d s} \vec{j}+\frac{d z}{d s} \vec{k}\right) \\
& =F_{x} \frac{d x}{d s}+F_{y} \frac{d y}{d s}+F_{z} \frac{d z}{d s}=\frac{d}{d s} F(x(s), y(s), z(s))=0 \Rightarrow \vec{\nabla} F \perp \vec{T}
\end{aligned}
$$

Thus, $\vec{\nabla} F(a, b, c)$ is normal to \vec{T} at (a, b, c) and therefore to σ.

Tangent planes

Consider a level surface $\sigma: \quad F(x, y, z)=k$, and let $P=(a, b, c)$ belong to σ.
Since $\vec{\nabla} F(a, b, c)$ is normal to tangent vectors to curves on σ through P, all these tangent vectors belong to one and the same plane.
This plane is called the tangent plane to the surface σ at P.

To find an equation of the tangent plane we use that if we know a vector \vec{n} normal to a plane through a point $\vec{r}_{0}=a \vec{i}+b \vec{j}+c \vec{k}$ then an equation of the plane is

$$
\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0 \quad \Leftrightarrow \quad n_{1}(x-a)+n_{2}(y-b)+n_{3}(z-c)=0
$$

because $\vec{r}-\vec{r}_{0}$ is parallel to the plane and therefore normal to \vec{n}.
Choosing $\vec{n}=\vec{\nabla} F(a, b, c)$, we get the equation of the tangent plane to the level surface σ at $P=(a, b, c)$

$$
F_{x}(a, b, c)(x-a)+F_{y}(a, b, c)(y-b)+F_{z}(a, b, c)(z-c)=0
$$

The line through P parallel to $\vec{\nabla} F(a, b, c)$ is perpendicular to the tangent plane, and is called the normal line to the surface σ at P. Its parametric equations are

$$
x=a+F_{x}(a, b, c) t, \quad y=b+F_{y}(a, b, c) t, \quad z=c+F_{z}(a, b, c) t
$$

Example. $4 x^{2}+y^{2}+z^{2}=18$ at $(2,1,1)$.
Tangent plane, normal line, the angle the tangent plane makes with the $x y$-plane?

Tangent planes to $z=f(x, y)$

The graph of a function $z=f(x, y)$ can be thought of as the level surface of the function $F(x, y, z)=f(x, y)-z$ with constant 0 .

We find

1. the gradient

$$
\vec{\nabla} F(a, b, c)=f_{x}(a, b) \vec{i}+f_{y}(a, b) \vec{j}-\vec{k}, \quad c=f(a, b)
$$

2. the equation of the tangent plane to the surface $z=f(x, y)$ at $(a, b, f(a, b))$

$$
\begin{aligned}
& f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)-(z-c)=0 \Rightarrow \\
& z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
\end{aligned}
$$

that is the local linear approximation of f at (a, b),
3. the parametric equations of the normal line to the surface

$$
\begin{aligned}
z= & f(x, y) \text { at }(a, b, f(a, b)) \\
& x=a+f_{x}(a, b) t, \quad y=b+f_{y}(a, b) t, \quad z=f(a, b)-t
\end{aligned}
$$

Example. Consider the surface
$z=f(x, y)=\ln \left(\frac{1}{2} e^{2 / 3} \sqrt[3]{12 \sin (x-2 y)+8 y^{2}-x^{3}-6 x^{2} y+32}\right)$

1. Find an equation for the tangent plane and parametric equations for the normal line to the surface at the point $P=\left(2,1, z_{0}\right)$ where $z_{0}=f(2,1)$.
2. Find points of intersection of the tangent plane with the x-, y and z-axes. Sketch the tangent plane, and show the point P on it. Sketch the normal line to the surface at P.

8 Maxima and minima of functions of two variables

Definition. A function f
of two variables is said to have a relative maximum (minimum) at a point (a, b) if there is a disc centred at (a, b) such that
$f(a, b) \geq f(x, y)(f(a, b) \leq f(x, y))$

for all points (x, y) that lie inside the disc.

A function f is said to have an absolute maximum (minimum) at (a, b) if
$f(a, b) \geq f(x, y)(f(a, b) \leq f(x, y))$ for all points (x, y) that lie inside in the domain of f.

If f has a relative (absolute) maximum or minimum at (a, b)

Absolute minimum then we say that f has a relative (absolute) extremum at (a, b). relative \leftrightarrow local

The extreme-value theorem. If $f(x, y)$ is continuous on a closed and bounded set R, then f has both absolute maximum and ansolute minimum on R.

Finding relative extrema

Theorem. If f has a relative extremum at (a, b), and if the first-order derivatives of f exist at this point, then

$$
f_{x}(a, b)=0 \text { and } f_{y}(a, b)=0
$$

Definition. A point (a, b) in the domain of $f(x, y)$ is called a critical point of f if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, or if one or both partial derivatives do not exist at (a, b).

Example. $f(x, y)=y^{2}-x^{2}$ is a hyperbolic paraboloid.
$f_{x}=-2 x, f_{y}=2 y \Rightarrow(0,0)$ is critical but it is not a relative extremum. It is a saddle point.

We say that a surface $z=f(x, y)$ has a saddle point at (a, b) if there are two distinct vertical planes through this point such that the trace of the surface in one of the planes has a relative maximum at (a, b), and the trace in the other has a relative minimum at (a, b).

Example.

How to determine whether a critical point is a max or min?

The second partials test

Theorem. Let $f(x, y)$ have continuous second-order partial derivatives in some disc centred at a critical point (a, b), and let

$$
D=f_{x x}(a, b) f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}
$$

1. If $D>0$ and $f_{x x}(a, b)>0$, then f has a relative minimum at (a, b).
2. If $D>0$ and $f_{x x}(a, b)<0$, then f has a relative maximum at (a, b).
3. If $D<0$, then f has a saddle point at (a, b).
4. If $D=0$, then no conclusion can be drawn.

Example.

$$
f(x, y)=x^{4}-x^{2} y+y^{2}-3 y+4
$$

How to find the absolute extrema of a continuous function of two variables on a closed and bounded set R ?

1. Find the critical points of f that lie in the interior of R.
2. Find all the boundary points at which the absolute extrema can occur.
3. Evaluate $f(x, y)$ at the found points. The largest of these values is the absolute maximum, and the smallest the absolute minimum.

Example.

$f(x, y)=3 x+6 y-3 x y-7, \quad R$ is the triangle $(0,0),(0,3),(5,0)$

Lagrange multipliers

Extremum problems with constraints:

Find max or min of the function $f\left(x_{1}, \ldots, x_{n}\right)$ subject to constraints $g_{\alpha}\left(x_{1}, \ldots, x_{n}\right), \alpha=1, \ldots, m$

Consider $f(x, y)$ and $g(x, y)=0$.
The graph of $g(x, y)=0$ is a curve.
Consider level curves of $f: f(x, y)=k$.
At (a, b) the curves just touch, and thus have a common tangent line at (a, b). Since $\vec{\nabla} f(a, b)$ is normal to the level curve at (a, b), and $\vec{\nabla} g(a, b)$ is normal to the constraint curve at (a, b), we get $\vec{\nabla} f(a, b) \| \vec{\nabla} g(a, b)$

Maximum of $f(x, y)$ is 400
(a)
 and its local extrema are at

Minimum of $f(x, y)$ is 200

$$
\begin{aligned}
& \frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} x^{\prime}+\frac{\partial f}{\partial y} y^{\prime} \\
& \quad=\vec{\nabla} f \cdot\left(x^{\prime} \vec{i}+y^{\prime} \vec{j}\right)=\vec{\nabla} f \cdot \vec{T}
\end{aligned}
$$

Thus, both $\vec{\nabla} f$ and $\vec{\nabla} g$ are \perp to \vec{T}.

In general, we introduce a Lagrange multiplier λ_{α} for each of the constraint g_{α}, and the equations are

$$
\vec{\nabla} f=\sum_{\alpha=1}^{m} \lambda_{\alpha} \vec{\nabla} g_{\alpha}
$$

Example. Find the points on the sphere $x^{2}+y^{2}+z^{2}=36$ that are closest to and farthest from the point $(1,2,2)$.

