
7 Directional Derivatives and Gradients

Suppose we need to compute the rate

of change of f (x, y) with respect to

the distance from a point (a, b) in

some direction. Let ~u = u1
~i + u2

~j

be the unit vector that has its initial

point at (a, b) and points in the

desired direction. It determines a line in the xy-plane:

x = a + s u1 , y = b + s u2

where s is the arc length parameter that has its reference point at (a, b)

and has positive values in the direction of ~u.

Definition. The directional derivative of f (x, y) in the direction

of ~u at (a, b) is denoted by D~uf (a, b) and is defined by

D~uf (a, b) =
d

ds
[f (a + s u1 , b + s u2)]

∣∣∣
s=0

= fx(a, b)u1 + fy(a, b)u2

provided this derivative exists.

Analytically, D~uf (a, b) is the

instantaneous rate of change of

f (x, y) with respect to the distance

in the direction of ~u

at the point (a, b).

Geometrically, D~uf (a, b) is

the slope of the surface z = f (x, y)

in the direction of ~u

at the point (a, b, f (a, b)).
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Generalisation to f (x, y, z) (and f (x1, . . . , xn)) is straightforward.

Definition. Let ~u = u1
~i + u2

~j + u3
~k be a unit vector.

The directional derivative of f (x, y, z) in the direction of ~u at

(a, b, c) is denoted by D~uf (a, b, c) and is defined by

D~uf (a, b, c) =
d

ds
[f (a + s u1 , b + s u2 , c + s u3)]

∣∣∣
s=0

= fx(a, b, c)u1 + fy(a, b, c)u2 + fz(a, b, c)u3

Example. Find D~uf (2, 1) in the direction of ~a = 3~i + 4~j

f (x, y) = ln

(
1

2
e2/3 3

√
12 sin(x− 2y) + 8y2 − x3 − 6x2y + 32

)
Answer: D~uf (2, 1) = −5/3
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The gradient

Note that

D~uf = fx u1 + fy u2 + fz u3 = (fx~i+ fy~j + fz ~k) · (u1
~i+ u2

~j + u3
~k)

Definition. Let ~ei be the standard orthonormal coordinate basis of

Rn, so that ~r =
∑n

i=1 xi~ei.

The gradient of f (x1, · · · , xn) is defined by

~∇f (x1, · · · , xn) =

n∑
i=1

∂f (x1, · · · , xn)

∂xi
~ei

In particular

~∇f (x, y) = fx(x, y)~i + fy(x, y)~j

~∇f (x, y, z) = fx(x, y, z)~i + fy(x, y, z)~j + fz(x, y, z)~k

The symbol ~∇ is read as either “nabla” (from ancient Hebrew) or “del”

(it is inverted ∆).

D~uf (a, b) = ~∇f (a, b)·~u , D~uf (a, b, c) = ~∇f (a, b, c)·~u , D~uf = ~∇f ·~u

Example. Find ~∇r; r =
√
x2 + y2 + z2 and D~ur(1, 1, 1) in the

direction of ~a =~i + 2~j + 2~k.
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Properties of the gradient

D~uf (a, b) = ~∇f (a, b) · ~u = |~∇f (a, b)| |~u| cos θ = |~∇f (a, b)| cos θ

Since −1 ≤ cos θ ≤ 1, if |~∇f (a, b)| 6= 0 then the maximum value of

D~uf (a, b) is |~∇f (a, b)| and it occurs when θ = 0, that is, when ~u is

in the direction of ~∇f (a, b).

Geometrically, the maximum slope of the surface z = f (x, y) at

(a, b) is in the direction of the gradient and is equal to |~∇f (a, b)|.

If |~∇f (a, b)| = 0 then D~uf (a, b) = 0 in all directions at (a, b).

It occurs where the surface z = f (x, y) has a relative maximum or

minimum or a saddle point.
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Since D~uf (x1, . . . , xn) = |~∇f (x1, . . . , xn)| cos θ, these properties

hold for functions of any number of variables.

Theorem. Let f be a function differentiable at a point P .

1. If ~∇f = ~0 at P then all directional derivatives of f at P are 0.

2. If ~∇f 6= ~0 at P then the derivative in the direction of ~∇f at P

has the largest value equal to |~∇f | at P .

3. If ~∇f 6= ~0 at P then the derivative in the direction opposite to

that of ~∇f at P has the smallest value equal to −|~∇f | at P .

Example. The point P = (2, 3,−1)

f (x, y, z) =
√

2xy + 3z4 − 6 cos(3x− 2y)
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Gradients are normal to level curves and level surfaces

Level curve C: f (x, y) = k.

Let C be smoothly parametrised as x = x(s), y = y(s) where

s is an arc length parameter. The unit tangent vector to C is

~T (s) =
dx

ds
~i +

dy

ds
~j

Since f (x, y) is constant on C we expect D~Tf (x, y) = 0. Indeed

D~Tf (x, y) = ~∇f · ~T = (fx~i + fy~j) · (
dx

ds
~i +

dy

ds
~j)

= fx
dx

ds
+ fy

dy

ds
=

d

ds
f (x(s), y(s)) = 0 ⇒ ~∇f ⊥ ~T

Thus if (a, b) belongs to the level curve, and ~∇f (a, b) 6= ~0 then

~∇f (a, b) is normal to ~T at (a, b) and therefore to the level curve.
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Definition. A vector is called normal to a surface at (a, b, c) if it is

normal to a tangent vector to any curve on the surface through (a, b, c).

Level surface σ: F (x, y, z) = k

Let C, smoothly parametrised as x = x(s), y = y(s), z = z(s)

be any curve on σ through (a, b, c). The unit tangent vector to C is

~T (s) =
dx

ds
~i +

dy

ds
~j +

dz

ds
~k

and D~TF (x, y, z) is

D~TF (x, y, z) = ~∇F · ~T = (Fx~i + Fy~j + Fz ~k) · (dx
ds
~i +

dy

ds
~j +

dz

ds
~k)

= Fx
dx

ds
+ Fy

dy

ds
+ Fz

dz

ds
=

d

ds
F (x(s), y(s), z(s)) = 0 ⇒ ~∇F ⊥ ~T

Thus, ~∇F (a, b, c) is normal to ~T at (a, b, c) and therefore to σ.
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Tangent planes

Consider a level surface σ: F (x, y, z) = k,

and let P = (a, b, c) belong to σ.

Since ~∇F (a, b, c) is normal to tangent

vectors to curves on σ through P ,

all these tangent vectors belong to one

and the same plane.

This plane is called the tangent plane

to the surface σ at P .

To find an equation of the tangent plane

we use that if we know a vector ~n normal

to a plane through a point ~r0 = a~i + b~j + c~k

then an equation of the plane is

~n · (~r − ~r0) = 0 ⇔ n1(x− a) + n2(y − b) + n3(z − c) = 0

because ~r − ~r0 is parallel to the plane and therefore normal to ~n.

Choosing ~n = ~∇F (a, b, c), we get the equation of the tangent plane to

the level surface σ at P = (a, b, c)

Fx(a, b, c)(x− a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0

The line through P parallel to ~∇F (a, b, c) is perpendicular to the

tangent plane, and is called the normal line to the surface σ at

P . Its parametric equations are

x = a + Fx(a, b, c)t , y = b + Fy(a, b, c)t , z = c + Fz(a, b, c)t

Example. 4x2 + y2 + z2 = 18 at (2, 1, 1).

Tangent plane, normal line, the angle the tangent plane makes with

the xy-plane?
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Tangent planes to z = f (x, y)

The graph of a function z = f (x, y) can be thought of as the level

surface of the function F (x, y, z) = f (x, y)− z with constant 0.

We find

1. the gradient

~∇F (a, b, c) = fx(a, b)~i + fy(a, b)~j − ~k , c = f (a, b)

2. the equation of the tangent plane to the surface z = f (x, y) at

(a, b, f (a, b))

fx(a, b)(x− a) + fy(a, b)(y − b)− (z − c) = 0 ⇒
z = f (a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

that is the local linear approximation of f at (a, b),

3. the parametric equations of the normal line to the surface

z = f (x, y) at (a, b, f (a, b))

x = a + fx(a, b) t , y = b + fy(a, b) t , z = f (a, b)− t

Example. Consider the surface

z = f (x, y) = ln

(
1

2
e2/3 3

√
12 sin(x− 2y) + 8y2 − x3 − 6x2y + 32

)
1. Find an equation for the tangent plane and parametric equations

for the normal line to the surface at the point P = (2, 1, z0) where

z0 = f (2, 1).

2. Find points of intersection of the tangent plane with the x-, y-

and z-axes. Sketch the tangent plane, and show the point P on it.

Sketch the normal line to the surface at P .
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8 Maxima and minima of functions of two variables

Definition. A function f

of two variables is said to have a

relative maximum (minimum)

at a point (a, b) if there is a disc

centred at (a, b) such that

f (a, b) ≥ f (x, y) (f (a, b) ≤ f (x, y))

for all points (x, y) that lie inside

the disc.

A function f is said to have an

absolute maximum (minimum)

at (a, b) if

f (a, b) ≥ f (x, y) (f (a, b) ≤ f (x, y))

for all points (x, y) that lie inside

in the domain of f .

If f has a relative (absolute)

maximum or minimum at (a, b)

then we say that f has a relative

(absolute) extremum at (a, b).

relative ↔ local
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The extreme-value theorem. If f (x, y) is continuous on a closed

and bounded set R, then f has both absolute maximum and an abso-

lute minimum on R.

Finding relative extrema

Theorem. If f has a relative extremum at (a, b), and if the first-order

derivatives of f exist at this point, then

fx(a, b) = 0 and fy(a, b) = 0

Definition. A point (a, b) in the domain of f (x, y) is called a crit-

ical point of f if fx(a, b) = 0 and fy(a, b) = 0, or if one or both

partial derivatives do not exist at (a, b).

Example. f (x, y) = y2 − x2 is a

hyperbolic paraboloid.

fx = −2x, fy = 2y ⇒ (0, 0) is critical

but it is not a relative extremum.

It is a saddle point.
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We say that a surface z = f (x, y) has a saddle point at (a, b) if

there are two distinct vertical planes through this point such that the

trace of the surface in one of the planes has a relative maximum at

(a, b), and the trace in the other has a relative minimum at (a, b).

Example.

How to determine whether a critical point is a max or min?
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The second partials test

Theorem. Let f (x, y) have continuous second-order partial

derivatives in some disc centred at a critical point (a, b), and let

D = fxx(a, b)fyy(a, b)−
(
fxy(a, b)

)2

1. If D > 0 and fxx(a, b) > 0, then f has a relative minimum at

(a, b).

2. If D > 0 and fxx(a, b) < 0, then f has a relative maximum at

(a, b).

3. If D < 0, then f has a saddle point at(a, b).

4. If D = 0, then no conclusion can be drawn.

Example.

f (x, y) = x4 − x2y + y2 − 3y + 4

How to find the absolute extrema of a continuous function of two

variables on a closed and bounded set R?

1. Find the critical points of f that lie in the interior of R.

2. Find all the boundary points at which the absolute extrema can

occur.

3. Evaluate f (x, y) at the found points. The largest of these values is

the absolute maximum, and the smallest the absolute minimum.

Example.

f (x, y) = 3x + 6y − 3xy − 7 , R is the triangle (0, 0), (0, 3), (5, 0)
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Lagrange multipliers

Extremum problems with constraints:

Find max or min of the function f (x1, . . . , xn) subject to constraints

gα(x1, . . . , xn), α = 1, . . . ,m

Consider f (x, y) and g(x, y) = 0.

The graph of g(x, y) = 0 is a curve.

Consider level curves of f : f (x, y) = k.

At (a, b) the curves just touch, and thus have

a common tangent line at (a, b). Since ~∇f (a, b)

is normal to the level curve at (a, b), and

~∇g(a, b) is normal to the constraint curve

at (a, b), we get ~∇f (a, b)||~∇g(a, b)

~∇f (a, b) = λ ~∇g(a, b)

for some scalar λ called the Lagrange multiplier.

Proof. Parametrise g(x, y) = 0.

Then, f (x, y) = f (x(t), y(t)) is a function of t

and its local extrema are at

d

dt
f (x(t), y(t)) =

∂f

∂x
x′ +

∂f

∂y
y′

= ~∇f · (x′~i + y′~j) = ~∇f · ~T

Thus, both ~∇f and ~∇g are ⊥ to ~T .
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In general, we introduce a Lagrange multiplier λα for each of the con-

straint gα, and the equations are

~∇f =

m∑
α=1

λα ~∇gα .

Example. Find the points on the sphere x2 + y2 + z2 = 36 that are

closest to and farthest from the point (1, 2, 2).
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